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Abstract. We consider a directed percolation process at its critical point. The probability that
the deviation of the global order parameter with respect to its average has not changed its sign
between 0 andt decays witht as a power law. In space dimensionsd > 4 theglobal persistence
exponentθp that characterizes this decay isθp = 2 while for d < 4 its value is increased to first
order inε = 4−d. Combining a method developed by Majumdar and Sire with renormalization
group techniques we compute the correction toθp to first order inε. The global persistence
exponent is found to be a new and independent exponent. Finally we compare our results with
existing simulations.

1. Motivations

1.1. Directed percolation

At the initial time A particles are placed randomly with densityρ0 on the sites of ad-
dimensional hypercubic lattice. They perform independent simple random walks with a
diffusion contantλ. Multiple occupancy is allowed. TheA particles undergo three reaction
processes: coagulation upon encounter at a ratek, branching at a ratek′, spontaneous death
at a rateγ ,

A+ A k→ A

A
k′→ A+ A

A
γ→ ∅.

(1.1)

As the branching ratek′ is decreased below a threshold valuek′c (equal toγ in mean field),
the steady state of this system exhibits a continuous transition from a state in which a finite
positive density ofA’s survive indefinitely to an absorbingA-free state. The order param-
eter of the transition isρA, the average of the local density ofA’s.

We have used the language of the Schlögl reaction–diffusion process to describe directed
percolation as in [2]. Various alternative formulations exist [3, 4]. In directed percolation
itself one usually starts from a single germ located at sitex = 0 at the initial timet = 0,
which evolves according to the rules equation (1.1). The interest is then focused on the
structure of the cluster of visited sites in the (d+1)-dimensional(x, t)-space. Nevertheless
the scope of directed percolation reaches far beyond chemical kinetics, as an overwhelmingly
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large class of nonequilibrium systems possessing a phase transition in their steady state fall
in the same universality class (cellular automata in information theory, surface growth in
which the interface has the same scaling properties as the hull of a directed percolation
cluster, several autocatalytic reactions). This makes the process equation (1.1) a paradigm
for nonequilibrium systems with a transition in their steady state. Our knowledge of
the behaviour of the system in the steady state and during the relaxation stages rests on
numerical simulations (in low space dimensions,d = 1, 2) and on analytical techniques
(short time series expansions ind = 1, 2, renormalization group ind = 4− ε). The critical
regime is characterized by a set of three independent exponents: the dynamical exponentz,
the anomalous dimension of the order parameterη and the correlation length exponentν.
Scaling laws forρA can be extracted from special cases of

ρA(t, k
′ − k′c, ρ0) = b−

d+η
2 F(b1/ν |k′ − k′c|, b−zt, b

d−η
2 ρ0) (1.2)

which holds in the limitb →∞ with the arguments ofF fixed. Similar scaling relations
exist for correlation functions.

1.2. Global persistence

In this paper we wish to focus on a property that cannot be deduced from the knowledge
of the scaling properties of correlation functions alone. We first define the deviation of the
global time-dependent order parameter with respect to its average:

9(t) ≡ lim
L→∞

L−d/2
∑
x∈Ld

[nA(x, t)− 〈nA(x, t)〉]. (1.3)

In equation (1.3) we denote bynA(x, t) the number ofA particles at sitex at time t , in a
particular realization of the reaction–diffusion process. The brackets〈. . .〉 denote an average
with respect to the set of microscopic realizations consistent with the initial conditions, the
rules equation (1.1) and the diffusion. The variable9 has a simple interpretation. When
one looks at a particular microscopic realization of the system9 states how far the total
number of particles deviates from a typical realization.

We define theglobal persistenceprobability as the probability that9 remain of constant
sign between 0 andt . Similar quantities have been considered (see [1, 5–7]) in critical
dynamics of magnetic systems,9 simply being the total magnetization. There it was
shown that, following a quench from a high-temperature disordered state to the critical
point, the global persistence probability decays with time as a power law characterized by
a universal exponentθp. In critical dynamics the persistence probability is a quantity that
appears naturally in the description of the system while it relaxes to its equilibrium state.
Our motivation for this work lies in the lack of both qualitative and analytical picture of
the onset of long-range correlations in nonequilibrium systems relaxing to their steady state.
We believe that the knowledge of the global persistence probability will shape our picture
of the way the system organizes at criticality.

This paper is organized as follows. In section 2 we recall the well known correspondence
between directed percolation and field theory. Following Majumdar and Sire [1], it
is possible to obtain the global persistence probability from a careful analysis of the
autocorrelation of the global order parameter. This analysis is performed in great detail
in sections 3 and 4. In section 5 we turn to the explicit calculation of the persistence
exponent. In our conclusion we compare our results with existing simulations.
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2. Field theoretic formulation

There are several ways of mapping directed percolation onto a field theory [2, 3]. The
resulting field theory involves a fieldψ whose average is the local density ofA individuals,
and a conjugate field̄ψ ; dropping terms irrelevant in the vicinity of the upper critical
dimensiondc = 4 the corresponding action reads

S[ψ, ψ̄ ] =
∫

ddx dt

[
ψ̄(∂t + λ(σ −1))ψ + λg

2
ψψ̄(ψ − ψ̄)− ρ0δ(t)ψ̄

]
. (2.1)

The parameterg can be expressed in terms of the coarse grained analogues of the original
reaction ratesk, k′, γ and the mass in the propagator is the coarse grained analogue ofγ−k′.
The action equation (2.1) is the starting point of the subsequent analysis. Renormalization
group techniques allow us to focus on scaling laws close to or at criticality, during the
relaxation process or in the steady state. Hereafter, as we shall eventually focus on
phenomena taking place at criticality, we setσ = 0. We now summarize a few well
known results on the renormalization of the action equation (2.1) that can be found, e.g.
in [8].

One first defines renormalized parameters and fields as follows

ψ =
√
ZψR ψ̄ =

√
Zψ̄R λ = Z−1ZλλR

g2

(8π)d/2
= Z−2

λ Z
−1Zuuµ

ε (2.2)

whereµ is a momentum scale. From the one-loop expression of the two- and three-point
vertex functions one deduces the values of theZ-factors using dimensional regularization
and the minimal subtraction scheme. They read

Z = 1+ u
ε

Zλ = 1+ u

2ε
Zu = 1+ 8u

ε
. (2.3)

Theβ-function has the one-loop expression

βu ≡ µ du

dµ
= u(−ε + 2γλ + γ − γu) = u(−ε + 6u) (2.4)

where we have introduced the Wilson functionsγi ≡ µ d lnZi
dµ , i = ∅, λ, u. Theβ-function

has a stable nontrivial fixed pointu? = ε
6 + O(ε2). Critical exponents are then obtained

from linear combinations of theγi(u?), e.g.z = 2− γ ?λ + γ ? andη = γ ?.
We find it convenient to shiftψ by its mean-field expression

ψmf(t) = ρ0

1+ λg

2 ρ0t
. (2.5)

Therefore the action expressed in terms of the fieldsφ ≡ ψ − ψmf and φ̄ ≡ ψ̄ reads

S[φ, φ̄] =
∫ [

φ̄

(
∂t + λ

(
gρ0

1+ λg

2 ρ0t
−1

))
φ − λgρ0

2(1+ λg

2 ρ0t)
φ̄2+ λg

2
φφ̄(φ − φ̄)

]
.

(2.6)

We have thus eliminated the initial term localized att = 0. We will use the following
notation: G(n,m) denotes the(n + m)-point correlation function involvingn fields φ and
m fields φ̄, as defined in equation (4.7), andW(n,m) denotes its connected counterpart.
The basic ingredients for a perturbative expansion are the free propagatorG and the free
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correlatorC, defined by the zero-loop expression ofG(1,1) andG(2,0), respectively. We
shall need the large time behaviour ofG andC:

G(k; t ′, t) = 2(t ′ − t)
(
t

t ′

)2

exp[−λ(k2+ σ)(t ′ − t)] (2.7)

C(k; t, t ′) = 2

t2>t
2
<

e−λk
2(t<+t>) 1

(2λk2)4
[6(1− e2λk2t< )+ 6(2λk2t<)e

2λk2t<

−3(2λk2t<)
2e2λk2t< + (2λk2t<)

3e2λk2t< ] (2.8)

in which we have sett< ≡ min{t, t ′} and t> ≡ max{t, t ′}. Note that the dependence on
the initial densityρ0 has disappeared, this is because we are focusing on times large with
respect to the timescale set byρ0. We now have the building blocks for a perturbation
expansion of the expectation values of time-dependent observables.

3. Autocorrelation function

Our aim is to find the one-loop correction to the functionC(t, t ′) defined by

C(t, t ′) ≡
∫

ddr W(2,0)(r, t; 0, t ′) = W(2,0)(k = 0; t, t ′) (3.1)

which is merely the autocorrelation function of the fieldψ . In order to determineC(t, t ′)
we carry out a perturbation expansion in powers of the coupling constantg. The first term
of this expansion is of courseC(k = 0; t, t ′). The first nontrivial corrections come in six
pieces, each depicted by a one-loop connected Feynman diagram shown in figure 1. The
explicit calculation of these diagrams combined with equations (2.2) and (2.3) allows one
to determine the renormalized autocorrelation function

CR(t, t
′) = Z−1C(t, t ′). (3.2)

Using again the shorthand notationst< = min{t, t ′}, t> = max{t, t ′}, we find

CR(t, t
′) = 1

2
(λt<µ

2)
ε

12

(
t<

t>

)2− ε
4

A
[
1− ε

6
F(t>/t<)+O(ε2)

]
(3.3)

which holds fort<, t> large with t>/t< finite. In equation (3.3) the amplitudeA reads

A = 1+ ε
6

(
1457

600
+ π

2

20
− 96

25
ln 2

)
+O(ε2) (3.4)

and the functionF has the expression

F(x) = − 19

30x
+ 11

6
+ π

2

10
− 96

25
ln 2+ 12

25
x − 7

50
x2− 77

50
x3

+ ln(1− x−1)

[
101

25
− 5x + x2+ x3− 26

25
x4− 1

25
x5+ 1

25x

]
+ ln(1+ x−1)

[
23

50
+ x + x2+ x3+ 23

50
x4− 1

25
x5− 1

25x

]
+2 ln2 x + 3 lnx ln(1− x−1)+ 4Li2(1− x)+ Li 2(1− x−1)

− 3
20(x

4− 1)Li 2(x
−2)− 3

5Li 2(x
−1) (3.5)
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a b

c d
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Figure 1. One-loop diagrams involved in the expression ofC(t, t ′). Note that diagrams (a),
(d), (f ) are the only one-loop contributions to〈ψ̈(0, 0)ψ(0, t)〉. We have used the following
graphical conventions: a plain leg denotes aψ field, an arrowed leg āψ field; the times of the
two externalψ legs are fixed, which we have indicated by a black square.

where Li2(x) = −
∫ x

0 dt ln(1− t)/t is the dilogarithm function. The limiting behaviour of
F is found to be

F(∞) = 8329
1200− 2

5π
2− 96

25 ln 2= 0.3313. . .

F (x)
x→1= −2(x − 1) ln(x − 1)+O(x − 1).

(3.6)

In the appendix we have listed the individual contributions toC(t, t ′) arising from the
corresponding Feynman diagrams.

4. Short time expansion

The result of the previous section equation (3.3) forCR(t
′, t) holds for all timest and t ′,

with t/t ′ finite, but the limitt � t ′ is singular. In this section we show that fort � t ′ the
autocorrelation functionCR(t

′, t) displays power law behaviour with respect to both time
arguments and determine the corresponding exponents. In this limit the random variable
9(t) becomes a Markovian process for which the persistence exponent may be expressed
in terms of well known critical exponents. In the case of the Ising model the Markovian
approximation forθp is already close to the values obtained by simulations [6, 5].

An appropriate method to study the correlation function fort � t ′ is the short time
expansion (STE) of the fieldψ(r, t) in terms of operators located at the ‘time surface’
t = 0. Since the Gaussian propagator and correlator are of the ordert2 for t → 0 we expect
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that the leading term in the STE is the second time derivativeψ̈ of ψ , i.e.

ψ(r, t)− 〈ψ(r, t)〉 = c(t)ψ̈(r, 0)+ · · · . (4.1)

(For t = 0 the second time derivative of the response fieldψ̄ is equivalent toψ̈ .) The
function c(t) is a power oft which can be obtained from the difference of the scaling
dimensions ofψ and ψ̈ . Naively, c(t) ∼ t2.

To compute the scaling dimension ofψ̈ in anε-expansion the first idea is to determine the
additional renormalization that is necessary to render correlation functions withψ̈ insertions
finite. For instance the one-loop expression of〈ψ̈(q = 0, 0)ψ(q = 0, t)〉 reads

〈ψ̈(0, 0)ψ(0, t)〉 = 1

t2

[
1+ g2

(8π)d/2
(λt)ε/2

(
3

ε
+O(1)

)
+O(g4)

]
. (4.2)

It results from the contribution of diagrams (a), (d), (f ) in figure 1. The pole inε may be
absorbed into an additional renormalization ofψ̈(0):

ψ̈(0) = (ZZ0)
1/2ψ̈R(r, 0) Z0 = 1+ 4u

ε
. (4.3)

At this stage we can give the scaling dimension ofψ̈(0):

d(ψ̈) = d + η
2
+ 2z+ 1

2
γ0(u

?) (4.4)

whereγ0 = −4u+O(u2) is the Wilson function associated toZ0, and obtain the additional
anomalous dimension of̈ψ(0) to first order inε.

Fortunately, it is possible to express this dimension to every order inε in terms of other
critical exponents. For the initial densityρ0 = ∞ there is a similarity between directed
percolation and the semi-infinite Ising model at the normal transition (i.e. for infinite surface
magnetization). In the latter case the short-distance expansion of the order parameter field
near the surface is governed by the stress tensor [9, 10]. Due to the translational invariance
of the bulk Hamiltonian the stress tensor requires no renormalization. Here we look for an
initial field which remains unrenormalized as a consequence of the translational invariance
(with respect to time) of the stationary state.

Our argument applies to any dynamic field theory defined by a dynamic functional of
the form

S[ψ, ψ̄ ] =
∫ ∞

0
dt
∫

ddr (ψ̄∂tψ − T [ψ, ψ̄ ]). (4.5)

We assume thatψ satisfies the sharp initial conditionψ(r, 0) = ρ0. For directed percolation
we have

T [ψ, ψ̄ ] = −λψ̄(σ −1)ψ − λg
2
ψψ̄(ψ − ψ̄). (4.6)

Correlation functions may be written in the form

G(n,m)({r, t}) =
∫
D[ψ, ψ̄ ]

m∏
i=1

ψ̄(r̄i , t̄i )
n∏
j=1

ψ(rj , tj ) exp(−S[ψ, ψ̄ ]) (4.7)

where the functional integral runs over all histories{ψ, ψ̄} which satisfy the initial condition.
We now introduce a new time variablet → t ′ = t + a(t) (with ȧ(t) > −1 to maintain

the time order) and the transformed fieldsψ̄ ′ andψ ′ with ψ̄ ′(t) = ψ̄(t ′) andψ ′(t) = ψ(t ′).
At lowest order ina(t) the dynamic functional becomes

S[ψ, ψ̄ ] = S[ψ ′, ψ̄ ′] −
∫

dt
∫

ddr ȧ(t)T [ψ ′, ψ̄ ′] (4.8)
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wherea(0) = 0 has been assumed.
Performing the time shift in the correlation functionG(n,m) and comparing the terms of

first order ina(t) on both sides of equation (4.7) one finds( m∑
i=1

a(t̄i)
∂

∂t̄i
+

n∑
j=1

a(tj )
∂

∂tj

)
G(n,m)({r, t})

=
〈
ψ̄(r̄1, t̄1) · . . . ψ(rn, tn)

∫
dt
∫

ddr ȧ(t)T [ψ, ψ̄ ]

〉
. (4.9)

Here the angular brackets indicate the average with respect to the weight exp(−S[ψ, ψ̄ ]).
We may choose

a(t) = a0(1− e−vt ) (4.10)

to obtain in the limitv→∞( m∑
i=1

∂

∂t̄i
+

n∑
j=1

∂

∂tj

)
G(n,m)({r, t}) =

〈
ψ̄(r̄1, t̄1) · . . . ψ(rn, tn)

∫
ddr T+

〉
(4.11)

whereT+ denotes the operatorT [ψ, ψ̄ ] in the limit t → 0+. (We have assumed that all
time arguments of the correlation function are nonzero.)

This result shows thatT+ remains unrenormalized to every order of the perturbation
theory. Therefore its scaling dimension is given byd(T+) = d + z. At the upper critical
dimensiondc = 4 we find d(T+) = d(ψ̈) = 6. In fact, one can show thatT+ and ψ̈(0)
differ for ρ−1

0 = 0 only by a constant prefactor. To see this we expressT [ψ, ψ̄ ] in terms of
the shifted fieldφ = ψ−ψmf. Sinceφ(t), ψ̄(t) ∼ t2 for t → 0 whileψmf(t) ∼ t−1 only the
term−(λg/2)ψ2

mfψ̄ contributes. ThusT+ ∼ ¨̄ψ(0) ∼ ψ̈(0), and the STE in equation (4.1)
becomes

ψ(r, t)− 〈ψ(r, t)〉 = c(t)T+(r)+ · · · (4.12)

with

c(t) ∼ t−(d(ψ)−d(T+))/z = t−((d+η)/2−(d+z))/z. (4.13)

Combining the STE with the general scaling form of the autocorrelation function one obtains

CR(t
′, t) ∼ t ′−η/z

(
t

t ′

)1+(d−η)/(2z)
(4.14)

which holds fort/t ′ → 0.

5. Global persistence

5.1. A detour via the Ornstein–Uhlenbeck process

Let X(τ) be a Gaussian process with the following autocorrelation function

〈X(τ)X(τ ′)〉 = e−θ
(0)
p |τ ′−τ | (5.1)

for τ, τ ′ large (but arbitraryτ − τ ′). The random variableX is thus a Gaussian stationary
Markov process (of unit variance). It satisfies a Langevin equation

dX

dτ
= −θ(0)p X(τ)+ ζ(τ ) θ(0)p > 0 (5.2)
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whereζ is Gaussian white noise:

〈ζ(τ )ζ(τ ′)〉 = 2θ(0)p δ(τ − τ ′). (5.3)

ThereforeX is an Ornstein–Uhlenbeck process. For such a process the probability thatX

be positive between 0 andτ decays exponentially as

Prob{∀τ ′ ∈ [0, τ ], X(τ ′) > 0} ∝ e−θ
(0)
p τ . (5.4)

These are standard results.

5.2. Expansion around an Ornstein–Uhlenbeck process

We now consider a Gaussian stationary processX(τ) which has the autocorrelation function

〈X(τ)X(τ ′)〉 = e−θ
(0)
p |τ ′−τ | + εf (τ ′ − τ) (5.5)

with f (0) = 0 andε � 1. ThenX is not a Markovian process. Majumdar and Sire [1]
have shown how to evaluate the probability thatX is positive between 0 andτ to first order
in ε. They found

Prob{∀τ ′ ∈ [0, τ ], X(τ ′) > 0} ∝ e−θpτ (5.6)

where

θp = θ(0)p

[
1− ε 2θ(0)p

π

∫ ∞
0

dτ
f (τ)

(1− exp(−2θ(0)p τ ))3/2
+O(ε2)

]
. (5.7)

Hakim [11] extended this result toO(ε2).

5.3. Application to the global order parameter

At any fixed timet there exists a dynamical correlation lengthξ ∼ t1/z such that the system
may be considered as a collection of effectively independent blocks of linear sizeξ . Hence
9 is the sum of(L/ξ)d independent degrees of freedom, which is a Gaussian variable in
the limit L→∞. We introduce the random variable

X(τ) ≡ 9(eτ )/
√

var9(eτ ) (5.8)

which has the autocorrelation function

〈X(τ)X(τ ′)〉 = e−θ
(0)
p |τ ′−τ | − ε

6
e−θ

(0)
p |τ ′−τ |F(e|τ

′−τ |) (5.9)

with, after equations (4.14) and (5.1)

θ(0)p = 1+ d

2z
. (5.10)

ThusX is a Gaussian stationary process. We are now in a position to apply toX the result
of section 5.2. Substitution of equations (5.9) and (5.10) into equation (5.7) yields

θp = θ(0)p

[
1+ 2ε

3π
I +O(ε2)

]
(5.11)

where the integral

I ≡
∫ ∞

1
dx

x3F(x)

(x4− 1)3/2
(5.12)
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has the analytic expression

I = 13

200
− 9C

20
− 91π

200
− 3π2

16
− 9π

80
ln 2+ 0(

1
4)

2

√
2π

[
π

4
− 1

8
ln 2+ 41

80

]
+
√

2π3

0( 1
4)

2

[
−77π

200
+ 23

12
− 3

4
ln 2

]
+ 1

50
3F2

(
1

4
, 1, 1; 5

4
,

3

2
; 1
)

−6

5

√
2π3

0( 1
4)

2 3F2

(
1

4
,

3

4
, 1; 5

4
,

5

4
; 1
)
− 1

30

0( 1
4)

2

√
2π

3F2

(
3

4
, 1,

5

4
; 7

4
,

7

4
; 1
)

+
√

2π3

0( 1
4)

2 3F2

(
1

2
,

3

4
, 1; 5

4
,

3

2
; 1
)
− 1

240

0( 1
4)

2

√
2π

3F2

(
1

4
, 1, 1; 7

4
, 2; 1

)
− 1

150

√
2π3

0( 1
4)

2 3F2

(
3

4
, 1,

3

2
; 9

4
,

5

2
; 1
)
+ 1

2
3F2

(
3

4
, 1, 1; 3

2
,

7

4
; 1
)

−3

8

0( 1
4)

2

√
2π

3F2

(
1

4
,

1

2
, 1; 3

4
,

3

2
; 1
)

= 0.630237. . . (5.13)

whereC denotes Catalan’s constant and3F2 the hypergeometric function of order(3, 2).
The final result reads

θp = θ(0)p (1+ 0.134ε +O(ε2)) = 2+ 0.059ε +O(ε2). (5.14)

6. Discussion

6.1. Comparison with existing simulations

Recently Hinrichsen and Koduvely [12] performed a numerical study of one-dimensional
directed percolation in order to determine the asymptotic behaviour of the global persistence
probability. In terms of the variable9 defined in equation (1.3), they found the following
results. For the probability that9 remain negativebetween 0 andt they indeed found
a power law decay characterized by a universal exponentθp that has a numerical value
θp & 1.50. However, they found an exponential decay for the probability that9 remain
positive between 0 andt . We have found that the global persistence probability decays
algebraicallyirrespectiveof the sign of9. The interpretation for such an asymmetry in
the simulations can be traced back in finite-size effects, which impair the accuracy of
the measurement of the persistence exponent. On the one hand, the global persistence
exponent is well defined in the regime in which the system has lost the memory of the
initial condition. This regime takes place for timest such thatt

d−η
2z ρ0 � 1. On the other

hand,9 is well defined in the limit of infinitely large systems, and then it is the sum of a
large number of effectively independent contributions, which, on a lattice of sizeL, forces
L � ξ ∼ t1/z. Hence, in a numerical simulation care must be taken to ensure that the
double limit Lz � t � ρ

−2z/(d−η)
0 is satisfied. The simulations in [12] fulfil the lower

bound but not the upper one. This has led the authors to a lower bound onθp. Finally, in
mapping the random process9(t) to X(τ) we have assumed that the time interval under
consideration contains only times large compared withρ−1

0 so that the regime in whichX is
stationary be reached. Strictly speaking, we should have defined the persistence probability
over a time interval [t0, t ], with t � t0 � ρ−1

0 . In a simulation the choicet0 = 0 leads
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to a persistence probability that enters the asymptotic regime after timest very large with
respect toρ−1

0 .

6.2. Some speculations

It is interesting to use theε-expansion to speculate on the numerical value ofθp in low space
dimension. We define theimprovedvalue ofθp, which we denote byθspec

p , by the product
of the actual value ofθ(0)p deduced from numerical simulations, and theO(ε) correction
given by equation (5.7). We use recent simulations results of one- and two-dimensional
directed percolation carried out by Lauritsenet al [13]

d z ν η θ(0)p θ
spec
p θp

1 1.581 1.097 −0.496 1.316 1.8 > 1.50
2 1.764 0.734 −0.409 1.567 2.0 −

4− ε 2− ε
12

1
2 + ε

16 − ε
6 2− 5ε

24 − 2+ 0.059ε
> 4 2 1

2 0 2 2 2

(6.1)

In the first two lines the exponentsz, ν and η are taken from [13]; the value ofθ(0)p was
obtained using the hyperscaling relationθ(0)p = 1+ d/2z, and that ofθp in d = 1 is taken
from [12]. Of course the columnθspec

p gives but a qualitative estimate of the trueθp that
is supposedly closer to it than that obtained by the crudeε-expansion. These predictions
certainly have to be tested against numerical simulations.

6.3. Final comments

We would like to add some comments on table (6.1). We find thatθp > 2 in d < 4 which
states that both the average and the variance of the time during which9 is of constant
sign are finite. The average time depends on a parameter which has the dimension of time,
but there is no timescale left in our treatment of the persistence probability. Therefore
the average time must depend on a microscopic scale orρ−1

0 , which we have treated as
a microscopic scale. This may also explain why the average time is infinite for critical
dynamics: for zero initial magnetization a timescale such asρ−1

0 does not exist. In critical
dynamics one could also define a persistence exponent for the critical relaxation from an
initial state with nonzero local magnetization. In that case the persistence exponent would
read in the Markovian approximationθ(0)p = 1+ d/(2z) > 1 (as for the problem we have
treated in this paper).

Acknowledgments

FvW would like to thank C Sire for a discussion on [1], V Hakim for communicating
[11], and H J Hilhorst for his interest and critical comments. We also acknowledge an
interesting discussion with H Hinrichsen. The work of KO was supported in part by the
Sonderforschungsbereich 237 (Unordnung und Große Fluktuationen (Disorder and Large
Fluctuations)) of the Deutsche Forschungsgemeinschaft.



Global persistence in directed percolation 7021

Appendix

We introduce the notationst< ≡ min{t, t ′} andt> ≡ max{t, t ′} and the ratior ≡ t>/t<. The
one-loop contributions to the functionC(t, t ′) are the following

figure 1(a) = g2µ−ε

(8π)d/2
r−2(µ2λt<)

ε/2

[
3

2

1

ε
+ 1

ε
ln r − 1

5

1

r
− 21

80
− 1

8
r − 3

16
r2− 3

8
r3

−3

8
(r4− 1) ln(1− r−1)+ 1
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(A.1)

figure 1(b) = g2µ−ε
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(A.2)

figures 1(c) and (d) = g2µ−ε
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(A.3)

figures 1(e) and (f ) = g2µ−ε
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