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Abstract. We consider a directed percolation process at its critical point. The probability that
the deviation of the global order parameter with respect to its average has not changed its sign
between 0 and decays withr as a power law. In space dimensiahg 4 theglobal persistence
exponentd,, that characterizes this decayfis = 2 while ford < 4 its value is increased to first
order ine = 4—d. Combining a method developed by Majumdar and Sire with renormalization
group techniques we compute the correctiordjoto first order ine. The global persistence
exponent is found to be a new and independent exponent. Finally we compare our results with
existing simulations.

1. Motivations

1.1. Directed percolation

At the initial time A particles are placed randomly with densjy on the sites of ai-
dimensional hypercubic lattice. They perform independent simple random walks with a
diffusion contant.. Multiple occupancy is allowed. Thé particles undergo three reaction
processes: coagulation upon encounter at akabeanching at a raté’, spontaneous death

at a ratey,

A+AS A
AX Ata (1.1)
AL g

As the branching raté’ is decreased below a threshold valgequal toy in mean field),

the steady state of this system exhibits a continuous transition from a state in which a finite
positive density ofA’s survive indefinitely to an absorbing-free state. The order param-
eter of the transition i®,, the average of the local density afs.

We have used the language of the $dhreaction—diffusion process to describe directed
percolation as in [2]. Various alternative formulations exist [3, 4]. In directed percolation
itself one usually starts from a single germ located at site O at the initial timer = 0,
which evolves according to the rules equation (1.1). The interest is then focused on the
structure of the cluster of visited sites in the{ 1)-dimensionalx, r)-space. Nevertheless
the scope of directed percolation reaches far beyond chemical kinetics, as an overwhelmingly
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large class of nonequilibrium systems possessing a phase transition in their steady state fall
in the same universality class (cellular automata in information theory, surface growth in
which the interface has the same scaling properties as the hull of a directed percolation
cluster, several autocatalytic reactions). This makes the process equation (1.1) a paradigm
for nonequilibrium systems with a transition in their steady state. Our knowledge of
the behaviour of the system in the steady state and during the relaxation stages rests on
numerical simulations (in low space dimensiods= 1, 2) and on analytical techniques
(short time series expansionsdn= 1, 2, renormalization group id = 4 — ¢). The critical

regime is characterized by a set of three independent exponents: the dynamical exponent
the anomalous dimension of the order parametand the correlation length exponent
Scaling laws forp, can be extracted from special cases of

palt kK =K., po) = b~ FOY k' — k| b, b2 po) (1.2)

which holds in the limith — oo with the arguments ofF fixed. Similar scaling relations
exist for correlation functions.

1.2. Global persistence

In this paper we wish to focus on a property that cannot be deduced from the knowledge
of the scaling properties of correlation functions alone. We first define the deviation of the
global time-dependent order parameter with respect to its average:

V() = lim L2y [na(@. 1) = (naz, 0)]. (1.3)

zeld

In equation (1.3) we denote by, (x, r) the number ofA particles at sitec at timer, in a
particular realization of the reaction—diffusion process. The bragkefsdenote an average
with respect to the set of microscopic realizations consistent with the initial conditions, the
rules equation (1.1) and the diffusion. The varialMehas a simple interpretation. When
one looks at a particular microscopic realization of the sysfierstates how far the total
number of particles deviates from a typical realization.

We define thaglobal persistenc@robability as the probability thab remain of constant
sign between 0 and. Similar quantities have been considered (see [1,5-7]) in critical
dynamics of magnetic systemd; simply being the total magnetization. There it was
shown that, following a quench from a high-temperature disordered state to the critical
point, the global persistence probability decays with time as a power law characterized by
a universal exponerd,. In critical dynamics the persistence probability is a quantity that
appears naturally in the description of the system while it relaxes to its equilibrium state.
Our motivation for this work lies in the lack of both qualitative and analytical picture of
the onset of long-range correlations in nonequilibrium systems relaxing to their steady state.
We believe that the knowledge of the global persistence probability will shape our picture
of the way the system organizes at criticality.

This paper is organized as follows. In section 2 we recall the well known correspondence
between directed percolation and field theory. Following Majumdar and Sire [1], it
is possible to obtain the global persistence probability from a careful analysis of the
autocorrelation of the global order parameter. This analysis is performed in great detail
in sections 3 and 4. In section 5 we turn to the explicit calculation of the persistence
exponent. In our conclusion we compare our results with existing simulations.
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2. Field theoretic formulation

There are several ways of mapping directed percolation onto a field theory [2, 3]. The
resulting field theory involves a fielgt whose average is the local densityAindividuals,

and a conjugate fields ; dropping terms irrelevant in the vicinity of the upper critical
dimensiond, = 4 the corresponding action reads

- _ A — — —
st 1= [ dtaan [0+ 200 = a0+ Ewi =i - w0 . @)

The parametep can be expressed in terms of the coarse grained analogues of the original
reaction rateg, k', y and the mass in the propagator is the coarse grained analoguekof
The action equation (2.1) is the starting point of the subsequent analysis. Renormalization
group techniques allow us to focus on scaling laws close to or at criticality, during the
relaxation process or in the steady state. Hereafter, as we shall eventually focus on
phenomena taking place at criticality, we set= 0. We now summarize a few well
known results on the renormalization of the action equation (2.1) that can be found, e.g.
in [8].

One first defines renormalized parameters and fields as follows

g2

@7

whereu is a momentum scale. From the one-loop expression of the two- and three-point
vertex functions one deduces the values of factors using dimensional regularization
and the minimal subtraction scheme. They read

v = Zyr v =vVZyg r=Z1Zr Z72727 Zupt (2.2)

8
z=1+% gz =142 z, =142 (2.3)
£ 2¢e I3
The B-function has the one-loop expression
du
Bu = Ma =u(—e+2y +y — vu) = u(—¢+6u) (2.4)
where we have introduced the Wilson functions= ud'”Z’, i =@, A, u. The g-function

du
has a stable nontrivial fixed poimt* = & + O(g?). Critical exponents are then obtained
from linear combinations of theg; (u*), e.g.z =2 -y + y* andn = y*.
We find it convenient to shifty by its mean-field expression

£0
)= ———. 2.5
1;mef( ) 11 %gpol‘ ( )

Therefore the action expressed in terms of the figlds ¥ — ¥ and¢ = ¥ reads

- - 8Po Agpo o5  Ag - <
S[p, ¢ = 3 _ S0 A ___t8P0 g2 18 _al.
[¢. ¢] f[qﬁ( +k(1+%gpot >>¢ 2(1+%gpot)¢ + 5000 ¢)}
(2.6)

We have thus eliminated the initial term localizedrat= 0. We will use the following
notation: G"™ denotes then + m)-point correlation function involving: fields ¢ and
m fields ¢, as defined in equation (4.7), afd™™ denotes its connected counterpart.
The basic ingredients for a perturbative expansion are the free propagatod the free
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correlatorC, defined by the zero-loop expression Gf*Y and G2, respectively. We
shall need the large time behaviour @GfandC:

2
Gkt t) =0 —1) (%) exp[-A (k% 4+ o)t — 1)] (2.7)
. N 2 —Ak2(t.+1.) 1 ki 2 ki~
Ck;t, 1) = titie (2Ak2)4[6(1 k1<) 4 6(20k%1. )€
—3(2k?1) 2P + (k1) 3P (2.8)

in which we have set. = min{z, '} andr. = max(z,t’}. Note that the dependence on
the initial densitypg has disappeared, this is because we are focusing on times large with
respect to the timescale set py. We now have the building blocks for a perturbation
expansion of the expectation values of time-dependent observables.

3. Autocorrelation function
Our aim is to find the one-loop correction to the functiog, ') defined by
ct,t) = /ddr WEO @, 1;0,t) = WeO(k =0;1,1) (3.1)

which is merely the autocorrelation function of the field In order to determin€(z, ¢')

we carry out a perturbation expansion in powers of the coupling congtafte first term

of this expansion is of cours€(k = 0; ¢t,t’). The first nontrivial corrections come in six
pieces, each depicted by a one-loop connected Feynman diagram shown in figure 1. The
explicit calculation of these diagrams combined with equations (2.2) and (2.3) allows one
to determine the renormalized autocorrelation function

Cr(t, 1) =277, 1. (3.2)
Using again the shorthand notations= min{z, t'}, r. = maxt, '}, we find

24
Cr(t, 1) = %(kt<,u2)l% (?) A [1— %F(t>/t<) + 0(82)] (3.3)

>

which holds forz_, r. large withz. /¢_ finite. In equation (3.3) the amplitudé reads

1457 72
% <—5 L 2) + O (3.4)

A=1
+ 600 20 25

and the functionF has the expression

Py o 19 1w 96 12 T, 77
)=+ —+—— — —X = =X — —Xx
30r ' 6 ' 10 25 25° 50" 50
101 26, 1 1
_ 1 - 2 3_%5-4_ — 5 =
+In(1—x )|:25 5 +x“+x 25x 25x +25xi|
23 23, 1 1
L+ 5 | £° 2, 3,494 L+ 5 L
+in(+x )[50+x+x TR T T

+2In”x +3InxIn(1 — x ™) + 4Liz(1 — x) + Lio(1—x7
—2(x* = DLix(x7?) — 2Li(x7h (3.5)
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Figure 1. One-loop diagrams involved in the expressionCaf, t'). Note that diagramsaj,
(d), (f) are the only one-loop contributions tg/ (0, 0)¥ (0, 7)). We have used the following
graphical conventions: a plain leg denoteg dield, an arrowed leg & field; the times of the
two externaly legs are fixed, which we have indicated by a black square.

where Lb(x) = —fg dt In(1 — )/t is the dilogarithm function. The limiting behaviour of
F is found to be
2
F(oo) =82 _ 272 $£In2=0.3313...

1200 (3.6)

x—>1

Fx) = 2x-DInx—-1)+0(x —1).

In the appendix we have listed the individual contributionsCi@, ') arising from the
corresponding Feynman diagrams.

4. Short time expansion

The result of the previous section equation (3.3)dac(r’, ) holds for all timesr and ¢/,
with ¢ /¢’ finite, but the limitz <« ¢ is singular. In this section we show that fok ¢’ the
autocorrelation functiorr(#', #) displays power law behaviour with respect to both time
arguments and determine the corresponding exponents. In this limit the random variable
W (r) becomes a Markovian process for which the persistence exponent may be expressed
in terms of well known critical exponents. In the case of the Ising model the Markovian
approximation fom, is already close to the values obtained by simulations [6, 5].

An appropriate method to study the correlation function fex ¢’ is the short time
expansion (STE) of the field/ (r, t) in terms of operators located at the ‘time surface’
t = 0. Since the Gaussian propagator and correlator are of the Gréterr — 0 we expect
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that the leading term in the STE is the second time derivaivef v, i.e.

Y t) — (Y, D) =cOyr, 0 +---. (4.1)

(For r = 0 the second time derivative of the response figlds equivalent toyr.) The
function ¢(¢) is a power ofr which can be obtained from the difference of the scaling
dimensions ofy andv. Naively, c¢(t) ~ 2.

To compute the scaling dimensionfin ans-expansion the first idea is to determine the
additional renormalization that is necessary to render correlation functiong/iwitsertions
finite. For instance the one-loop expression¥ig = 0, 0)y (g = 0, 1)) reads

+ (87T)d/2

It results from the contribution of diagrama)( (d), (f) in figure 1. The pole ire may be
absorbed into an additional renormalizationyof0):

. 1 g2 e/2 3 4
(w(0,0)w(O,t)):t—z 1+ ——= (1) <g+(9(1))+0(g) . 42

. . 4
V(0 = (ZZ0)"r(r.0)  Zo=1+—. (4.3)
At this stage we can give the scaling dimensionjaD):
.. d+ 1
d() = = 422+ Syotu') (4.4)

wherey, = —4u + O(u?) is the Wilson function associated %y, and obtain the additional
anomalous dimension af (0) to first order ine.

Fortunately, it is possible to express this dimension to every ordeirirterms of other
critical exponents. For the initial densijy = oo there is a similarity between directed
percolation and the semi-infinite Ising model at the normal transition (i.e. for infinite surface
magnetization). In the latter case the short-distance expansion of the order parameter field
near the surface is governed by the stress tensor [9, 10]. Due to the translational invariance
of the bulk Hamiltonian the stress tensor requires no renormalization. Here we look for an
initial field which remains unrenormalized as a consequence of the translational invariance
(with respect to time) of the stationary state.

Our argument applies to any dynamic field theory defined by a dynamic functional of
the form

STy 1] = /0 T / dr (G, — TTy. 7). 4.5)

We assume thaf satisfies the sharp initial conditiah(r, 0) = po. For directed percolation
we have

_ _ A _ _
TV, ] = -2 (0 — A)yr — 7“”1/”//(1# — ). (4.6)

Correlation functions may be written in the form

m n

G (fr, 1)) = / Dy, V1] [V @i [ [v oy 1) exp=S[y. ¥ (4.7)
i=1 j=1

where the functional integral runs over all histor{gs v} which satisfy the initial condition.

We now introduce a new time variable—> ' =t + a(¢) (with a(¢) > —1 to maintain
the time order) and the transformed fieisand v’ with ¥'(r) = ¥ (') and /(1) = ¥ (¢').
At lowest order ina(t) the dynamic functional becomes

S[y 91 = Iy’ 9] - / o f & a() T 7] (4.8)
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wherea(0) = 0 has been assumed.
Performing the time shift in the correlation functigi™™ and comparing the terms of
first order ina(z) on both sides of equation (4.7) one finds

2 .0 = a
(Za(l‘,’)a—é + Zla(l‘j)a—tj)G(",m)({r’ )

i=1 j=
=<1}(1‘~1, 1) - ...tp(r,,,tn)/dt/ddra(t)T[w, 1}]>. (4.9)

Here the angular brackets indicate the average with respect to the weidhtS§xp v/]).
We may choose

a(t) =apg(l—e ") (4.10)
to obtain in the limitv — oo
(Z}i+ EJGWWwJD=WﬁLm~wamm/d%n> (4.11)
) at; = Btj

where T, denotes the operatdf[v, v/] in the limit + — 0*. (We have assumed that all
time arguments of the correlation function are nonzero.)

This result shows thal’, remains unrenormalized to every order of the perturbation
theory. Therefore its scaling dimension is givendyf,) = d + z. At the upper critical
dimensiond, = 4 we findd(T,) = d(y/) = 6. In fact, one can show that, and v (0)
differ for ,oo‘l = 0 only by a constant prefactor. To see this we expi#&ss, /] in terms of
the shifted fieldp = v —ymr. Sinceg (1), ¥ (1) ~ 12 for 1 — 0 while yys(r) ~ 1~ only the
term —(rg/2)y 2 contributes. Thud, ~ ¥(0) ~ ¥(0), and the STE in equation (4.1)
becomes

Yr, ) — (Y, 1) =cO)Ty(r) +--- (4.12)
with
c(r) ~ ¢~ @=dT)/z — = d+n)/2=[d+2)/z (4.13)

Combining the STE with the general scaling form of the autocorrelation function one obtains

\LHd=n/22)
) (4.14)

@waw”W<7

which holds fort/t" — 0.

5. Global persistence

5.1. A detour via the Ornstein—Uhlenbeck process
Let X (r) be a Gaussian process with the following autocorrelation function
(X(D)X(r) = eI (5.1)

for 7, ¢’ large (but arbitraryr — t’). The random variabl& is thus a Gaussian stationary
Markov process (of unit variance). It satisfies a Langevin equation
dx

= —00X (1) + ¢ (1) 0¥ >0 (5.2)
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where¢ is Gaussian white noise:
(C(E()) = 20,28z — 7). (5.3)

ThereforeX is an Ornstein—Uhlenbeck process. For such a process the probability that
be positive between 0 anddecays exponentially as

Probvz’ € [0, 7], X(¢/) > 0} occ &% 7. (5.4)

These are standard results.

5.2. Expansion around an Ornstein—Uhlenbeck process
We now consider a Gaussian stationary procé&s) which has the autocorrelation function
(X(@OX(@)) =% 7 L ef(¢/ — 1) (5.5)

with f(0) = 0 ande <« 1. ThenX is not a Markovian process. Majumdar and Sire [1]
have shown how to evaluate the probability tiats positive between 0 andto first order
in €. They found

ProbvVz’ € [0, 7], X (/) > O} x e %° (5.6)
where
29(0) e’}
6, =00 [1 O f de f@ s+ 0(62)}. (5.7)
T Jo (1—exp(—20,"1))%?

Hakim [11] extended this result t®(e?).

5.3. Application to the global order parameter

At any fixed timer there exists a dynamical correlation length- /2 such that the system
may be considered as a collection of effectively independent blocks of lineaf.slzence

W is the sum of(L/£)¢ independent degrees of freedom, which is a Gaussian variable in
the limit L — oo. We introduce the random variable

X (1) = W(e")//varv(er) (5.8)
which has the autocorrelation function
(X(T)X(2)) = e &7~ _ %e—"f@'f—f'F(e'f'—f') (5.9)

with, after equations (4.14) and (5.1)
d
O _
0, =1+ P (5.10)

Thus X is a Gaussian stationary process. We are now in a position to appithe result
of section 5.2. Substitution of equations (5.9) and (5.10) into equation (5.7) yields

2
6, =0 [1 n iz + (’)(82)] (5.11)

where the integral

0 3
IE/ dx (Xﬂ (5.12)
1

x4 —1)32
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has the analytic expression

13 9C 9lr 3% 9n rd2rr 1 41
=2 T T T Moyt Z 2+ =
200 20 200 16 80 J2r L4 8 80
V2r3[ 7tr 23 3 1 1 53
Sk AT 1 [T o i [ PRty |
+r(l)2[ 200 12 4 ]jLso3 2(4’ il )
621 55 1T (5?2 577
1 32 _7_51;_’_;1 3 2 7_5_7_5
5r(z)2 4247 48487) 30 J2n 444
V213 13 .53 1 1y
t+—53F2 |5 5 L5l 3F2
r? 2247427 240 Jon
1 273 3.395 1 37
Y (2132 2 ) i (S s
1501 (1)2 47242 22\ 7724
3I(3)? 1 1 33
@ 3P TRy |
8«/27'[ 4 2

= 0.630237... (5.13)

where C denotes Catalan’s constant agieh the hypergeometric function of ordés, 2).
The final result reads

0, =07 (1+ 0.134 + O(¢%)) = 2+ 0.05% + O(e). (5.14)

6. Discussion

6.1. Comparison with existing simulations

Recently Hinrichsen and Koduvely [12] performed a numerical study of one-dimensional
directed percolation in order to determine the asymptotic behaviour of the global persistence
probability. In terms of the variabl& defined in equation (1.3), they found the following
results. For the probability tha¥ remain negativebetween 0 and they indeed found

a power law decay characterized by a universal expo#igrihat has a numerical value

6, 2 1.50. However, they found an exponential decay for the probability thaemain
positive between 0 and. We have found that the global persistence probability decays
algebraicallyirrespectiveof the sign of . The interpretation for such an asymmetry in

the simulations can be traced back in finite-size effects, which impair the accuracy of
the measurement of the persistence exponent. On the one hand, the global persistence
exponent is well defined in the regime in which the system has lost the memory of the
initial condition. This regime takes place for timesuch thatt”z;:"po > 1. On the other
hand, ¥ is well defined in the limit of infinitely large systems, and then it is the sum of a
large number of effectively independent contributions, which, on a lattice ofsiferces

L > & ~ tY%. Hence, in a numerical simulation care must be taken to ensure that the
double limit L? > t > p02 /=0 s satisfied. The simulations in [12] fulfil the lower
bound but not the upper one. This has led the authors to a lower bouégd éfinally, in
mapping the random proceds(r) to X (r) we have assumed that the time interval under
consideration contains only times large compared wgﬁ so that the regime in whicl is
stationary be reached. Strictly speaking, we should have defined the persistence probability
over a time interval #, ¢], with ¢ > 1o > po_l. In a simulation the choice = 0 leads
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to a persistence probability that enters the asymptotic regime after timey large with
respect too, .

6.2. Some speculations

It is interesting to use the-expansion to speculate on the numerical valué,ah low space
dimension. We define thienprovedvalue ofé,, which we denote by,™* by the product
of the actual value 09}}” deduced from numerical simulations, and ¢s) correction
given by equation (5.7). We use recent simulations results of one- and two-dimensional

directed percolation carried out by Lauritsenal [13]

d z v n 00 6,7 0,
1 [ 1581 1.097 | —0.496| 1.316 | 1.8 | > 150
2 | 1764 ] 0.734 [ —0.409| 1567 [ 2.0 — (6.1)
1 3 5e
4—e|2-F5+5%| -5 |2-%| - [24005%
>4 ] 2 3 0 2 2 2

In the first two lines the exponentsv andn are taken from [13]; the value @f® was
obtained using the hyperscaling relati@ﬁ) = 1+d/2z, and that of9, in d = 1 is taken
from [12]. Of course the colums,” gives but a qualitative estimate of the trgg that
is supposedly closer to it than that obtained by the cru@spansion. These predictions
certainly have to be tested against numerical simulations.

6.3. Final comments

We would like to add some comments on table (6.1). We findf@pat 2 in d < 4 which

states that both the average and the variance of the time during whishof constant

sign are finite. The average time depends on a parameter which has the dimension of time,
but there is no timescale left in our treatment of the persistence probability. Therefore
the average time must depend on a microscopic scal@;hr which we have treated as

a microscopic scale. This may also explain why the average time is infinite for critical
dynamics: for zero initial magnetization a timescale suc}pgisdoes not exist. In critical
dynamics one could also define a persistence exponent for the critical relaxation from an
initial state with nonzero local magnetization. In that case the persistence exponent would
read in the Markovian approximaticﬁio) =144d/(2z) > 1 (as for the problem we have
treated in this paper).
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Appendix
We introduce the notations = min{z, ¢’} andz. = maxz, ¢’} and the ratio = . /r.. The
one-loop contributions to the functiai(z, ) are the following
1 11 21 1 3, 3,

: g1 5 o o[ 31
f|gure 16)2 (8 )d/zr_ (/L )\.[<)8/ |:§E+g|nr—g;—%—§r—l—6r —ér

——(r —DIn@A-rYH+Z |nr|n(1—r*1)+ In? r—}le(l—r 1)}

(A.1)
2, — 2
. & oo p[B51 7 11 169 3 129
figure 1p) = M) —— — — == — — —
gure 16) = 7 gmyaz’ W) [150 103, 150 100 * 50"
21 79 2 21
In(1—r1 r—2r2 -2 —rt 4 = - ==
+In(Q—r )( + 2r r r +50r +25r 557
23 23 2 21
NnA+rYH(-=—-2r—22 -2 - =44 /5
+in@+r )( A T T
3 4 . _2 6 . -1
—i—E(V — DLia(r )+§|—|2(F ) (A.2)
2, —¢
8 H 20,25, ye/2 2.
figures 1¢) and d) = (8 )d/z (Urto) [ . + - Inr 120
31 1 1 1 5 1
+§—+6r+zr +§r |n(1—l"71) <§—21"— 51’4)
-5 |n2r - = Inr —2Inrin(L—r=Y — 2Lin(1 — r)] (A.3)
2 —
gn* 22 )2 | =2 _°
figures 1€) and () = & )d/z (Urt) [ Inr+ - Inr 4In ri| (A.4)
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